21 research outputs found

    Oxygen Reduction Reaction (ORR) on Mixed Oxy-Nitride Non-Noble Catalyst: AB-Initio Simulation, Elaboration and Characterization

    Get PDF
    Dans ce projet, l’oxy-nitrure de titane (TiOxNy) a Ă©tĂ© Ă©tudiĂ© comme un nouvel Ă©lectro-catalyseur non noble pour la rĂ©action de rĂ©duction de l'oxygĂšne (RRO). Une comparaison dĂ©taillĂ©e entre quatre diffĂ©rentes mĂ©thodes de prĂ©paration sol-gel a Ă©tĂ© effectuĂ©e pour Ă©valuer les propriĂ©tĂ©s physicochimiques et Ă©lectrochimiques des Ă©lectro-catalyseurs produits. Parmi ces mĂ©thodes, un nouveau procĂ©dĂ© sol-gel Ă  base d'urĂ©e (simplement appelĂ©e mĂ©thode U) a Ă©tĂ© introduit pour prĂ©parer du TiOxNy Ă  une tempĂ©rature relativement basse et une durĂ©e relativement faible de recuit. Les matĂ©riaux fabriquĂ©s par cette nouvelle mĂ©thode donnent une activitĂ© Ă©lectro-catalytique de la RRO plus Ă©levĂ©e de celle des oxy-nitrures de titane prĂ©parĂ©s par les autres mĂ©thodes. Les Ă©lectro-catalyseurs, prĂ©parĂ©s avec diffĂ©rents rapports de N/O, ont montrĂ© des propriĂ©tĂ©s diffĂ©rentes allant d'un comportement trĂšs peu conducteurs (faible rapport N/O) pour les matĂ©riaux riches en oxygĂšne au comportement plus conducteur et stable chimiquement et Ă©lectro-chimiquement pour les oxy-nitrures riches en azote (rapport Ă©levĂ© en N/O), respectivement. GĂ©nĂ©ralement, les Ă©lectro-catalyseurs prĂ©parĂ©s par la mĂ©thode U avaient plus de nitrure de titane dans leurs structures que les Ă©lectro-catalyseurs prĂ©parĂ©s par les autres mĂ©thodes. NĂ©anmoins, le traitement thermique a un rĂŽle essentiel dans la composition de cette phase la faisant passer de phase ayant une composition en oxyde Ă  celle ayant une composition Ă©levĂ©e de nitrure. Selon l'analyse Ă©lĂ©mentaire effectuĂ©e par spectromĂ©trie Ă  dispersion d'Ă©nergie (EDS), le pourcentage d'azote dans le matĂ©riau est passĂ© de 9 Ă  24 pour cent en augmentant la tempĂ©rature de recuit de 700 Ă  1100 °C, tandis que le pourcentage d'oxygĂšne diminuait inversement. En outre, sur la base des donnĂ©es de la diffraction des rayons X (XRD), dans le cas de la mĂ©thode de U, les pics caractĂ©ristiques de TiN ont Ă©tĂ© dĂ©tectĂ©s, mĂȘme Ă  des tempĂ©ratures de recuit plus basses. L'augmentation de cette tempĂ©rature a Ă©galement fait apparaĂźtre des pics beaucoup plus marquĂ©s indiquant la croissance de la taille des cristallites. La taille calculĂ©e des cristallites a montrĂ© que celle des Ă©chantillons prĂ©parĂ©s par la mĂ©thode de U (de 20 Ă  40 nm de diamĂštre) Ă©tait presque dans la mĂȘme gamme de valeurs que celle de la taille des cristallites de TiN pur. La taille des cristallites des Ă©chantillons prĂ©parĂ©s par les autres procĂ©dĂ©s sol-gel (de 40 Ă  60 nm de diamĂštre) Ă©tait dans la mĂȘme gamme de la taille des cristallites de TiO2 pur. La microscopie Ă©lectronique Ă  balayage (MEB) et l’analyseur de surface B.E.T. ont Ă©tĂ© respectivement utilisĂ©s pour Ă©valuer la taille des particules et la surface spĂ©cifique des diffĂ©rents Ă©chantillons. Ils ont indiquĂ© une plus vi petite taille de particules et donc une surface spĂ©cifique plus Ă©levĂ©e pour les Ă©lectro-catalyseurs produits par la mĂ©thode U. Outre les caractĂ©risations physicochimiques mentionnĂ©es ci-dessus, la voltammĂ©trie cyclique (CV), la polarisation et la spectroscopie d'impĂ©dance Ă©lectrochimique (SIE) ont Ă©tĂ© utilisĂ©es pour Ă©valuer les propriĂ©tĂ©s Ă©lectrochimiques des Ă©lectro-catalyseurs. Les valeurs de la pente de Tafel, la densitĂ© de courant d’échange et le potentiel de dĂ©part ont rĂ©vĂ©lĂ© que l'Ă©lectro-catalyseur prĂ©parĂ© par le procĂ©dĂ© de U et qui a Ă©tĂ© recuit Ă  1100 °C, a eu la meilleure activitĂ© Ă©lectro-catalytique de tous les autres Ă©chantillons avec une pente de Tafel Ă©gale Ă  -203 mV/dĂ©cade, la densitĂ© du courant d’échange autour de 4E-04 mA/mg et le potentiel de dĂ©part proche de 0.8 volt par rapport Ă  ENH (Ă©lectrode normale Ă  hydrogĂšne). Les valeurs obtenues avec la SIE ont Ă©galement montrĂ© que c’est le meilleur Ă©lectro-catalyseur parce qu’il possĂšde la plus grande capacitĂ© spĂ©cifique (~ 3.3 F/g). Ce fait est aussi en accord avec la plus grande valeur de sa surface BET et Ă©galement sa plus faible rĂ©sistance de transfert de charge. La stabilitĂ© chimique et Ă©lectrochimique est l'un des facteurs dĂ©terminants dans le choix d'un Ă©lectro-catalyseur pour la RRO. À cet Ă©gard, l'ICP-TOF-MS a Ă©tĂ© utilisĂ© pour Ă©valuer la stabilitĂ© chimique et Ă©lectrochimique, sous l'environnement d’acide corrosif, des Ă©lectro-catalyseurs prĂ©parĂ©s, en mesurant la concentration du titane dissous aprĂšs un certain temps. Jusqu'Ă  prĂ©sent, la mesure de la concentration des mĂ©taux dissous par ICP-TOF-MS a Ă©tĂ© la seule mĂ©thode utilisĂ©e dans la littĂ©rature pour Ă©valuer sa stabilitĂ© chimique. Toutefois, dans ce projet, cette technique a Ă©tĂ© aussi utilisĂ©e aprĂšs beaucoup de balayages de voltammĂ©trie cyclique pour aussi Ă©valuer la stabilitĂ© Ă©lectrochimique de l'Ă©lectro-catalyseur; ce qui est plus rĂ©aliste et plus proche de l'Ă©tat de fonctionnement de la PEMFC (Polymer Electrolyte Membrane Fuel Cell). La stabilitĂ© du meilleur Ă©lectro-catalyseur avec l'activitĂ© Ă©lectro-catalytique la plus Ă©levĂ©e (prĂ©parĂ© par le procĂ©dĂ© U) est meilleure que l’électro-catalyseur Pt/C utilisĂ© dans le commerce, Ă  la fois chimiquement et Ă©lectro-chimiquement. La stabilitĂ© Ă©lectrochimique des Ă©lectro-catalyseurs prĂ©parĂ©s a Ă©galement Ă©tĂ© Ă©tudiĂ©e Ă  un potentiel oxydant Ă©levĂ© (plus de 2 volts vs NHE). La spectromĂ©trie photoĂ©lectronique des rayons X (XPS) a montrĂ© que la quantitĂ© d'azote Ă  la surface de l'Ă©lectro-catalyseur a diminuĂ© de 11% avant l'oxydation Ă  5% aprĂšs l'oxydation. Une diminution de l’activitĂ© Ă©lectro l'activitĂ© Ă©lectro-catalytique pour la RRO a diminuĂ© aprĂšs l'oxydation. Ainsi, diminuer la quantitĂ© de nitrure de titane Ă  la surface de l’oxy-nitrure de titane a rĂ©duit son activitĂ© Ă©lectro-catalytique. vii Dans la deuxiĂšme phase de ce projet, l'activitĂ© Ă©lectro- catalytique du nitrure de titane pour la RRO a Ă©tĂ© Ă©tudiĂ©e par le calcul de la thĂ©orie de la fonctionnelle de la densitĂ© (DFT). Au meilleur de notre connaissance, il n'existe pas d'Ă©tude de la chimie quantique thĂ©orique et numĂ©riques de nitrure de mĂ©tal de transition comme l'Ă©lectro-catalyseur dans les piles Ă  combustible PEM. La RRO a Ă©tĂ© considĂ©rĂ©e comme ayant lieu en trois diffĂ©rentes Ă©tapes sĂ©quentielles, Ă  savoir l'adsorption de l'oxygĂšne, la production d'hydroxyde et de dĂ©sorption de l'eau. Sur la base des rĂ©sultats de la diffraction des rayons X obtenus sur les meilleurs Ă©chantillons prĂ©parĂ©s qui montrent et qu’ils contiennent TiN(111) et TiN(200) comme les deux principales structures du TiN, la simulation a Ă©tĂ© sur la surface de ces deux structures. La simulation a Ă©tĂ© effectuĂ©e avec le logiciel «Vienna ab initio Simulation Package (VASP)» sur la base des ensembles de fonctions d'ondes planes aux conditions pĂ©riodiques limites et qui intĂšgre la description des interactions entre les Ă©lectrons. La comparaison des Ă©nergies d'adsorption des espĂšces liĂ©es Ă  la RRO a prouvĂ© l’existence d'une forte adsorption dissociative de l'oxygĂšne sur le TiN(111) quelles que soient les sites d'adsorption. Toutefois, en raison d'une adsorption de OH relativement forte sur TiN(111), cette surface a perdu les sites actifs pour procĂ©der Ă  la RRO, tandis que sur la surface du TiN(200), la production et la dĂ©sorption d'eau s’effectuent presque facilement. La densitĂ© d'Ă©tats Ă©lectroniques (DEE) a Ă©tĂ© obtenue pour calculer le centre de la bande d et le remplissage fractionnaire dans des situations diffĂ©rentes. ConsidĂ©rant la possibilitĂ© d’adsorption sur des sites pont et de haut de la TiN(200), ces informations indiquent que la production d’hydroxyde et la dĂ©sorption de l’eau sont les mesures dĂ©terminantes pour la RRO en site pont et sommet, respectivement. Par consĂ©quent, il est rĂ©vĂ©lĂ© que le TiN, spĂ©cialement TiN(200) a une activitĂ© Ă©lectro-catalytique pour la RRO. La perte de ce composant de la surface de l'oxy-nitrure de titane a provoquĂ© la diminution de son activitĂ© Ă©lectro-catalytique. ---------- In this project, titanium oxy-nitride (TiOxNy) has been studied as a new non-noble electro-catalyst for the oxygen reduction reaction (ORR). A comprehensive comparison between four different sol-gel methods was carried out to evaluate the physicochemical and electrochemical properties of the produced electro-catalysts. Among them, a new urea-based sol-gel method (simply called U method) is introduced to prepare TiOxNy at a fairly low temperature and duration, with higher electro-catalytic activity for the ORR. The prepared electro-catalysts with different N/O ratios showed different properties from a less conductive behavior in oxygen-rich (low N/O ratio) materials to more conductive electro-catalyst behavior in nitrogen-rich (high N/O ratio) oxy-nitrides, respectively. Generally, electro-catalysts prepared by the U method had more titanium nitride in their structures than the electro-catalysts prepared by the other methods. Nevertheless, heat treatment had a key role in this phase transferring from having high oxide structure to high nitride structure. According to the elemental analysis done by energy dispersive spectroscopy (EDS), nitrogen percentage in the bulk material increased from 9 to 24 percent by increasing the temperature from 700 to 1100 °C, while the oxygen percentage was decreasing inversely. In addition, based on the X-ray diffraction (XRD) data, in the case of U method, the TiN characteristic peaks were obvious, even at lower temperatures. Increasing the temperature also made the peaks much sharper indicating the growth of the crystallite size. The calculated crystallite size showed the crystallite size of samples prepared by U method (20 to 40 nm) was almost in the same range of the TiN crystallite size, but the crystallite size of the samples prepared by the other sol-gel methods (40 to 60 nm) was in the same range of the TiO2 crystallite size. Scanning electron microscopy (SEM) and B.E.T. surface area analyzer were used to evaluate the particle size and surface area of different samples, respectively. They indicated a smaller particle size and a higher surface area in the electro-catalysts produced by the U method. Besides the aforementioned physicochemical characterizations, cyclic voltammetry (CV), polarization, and electrochemical impedance spectroscopy (EIS) were used to evaluate the electrochemical properties of the electro-catalysts. Obtained Tafel slope, exchange current density and onset potential revealed that the electro-catalyst prepared by the U method which was annealed at 1100 °C, had the best electro-catalytic activity among all other samples with Tafel slope of -203 mV/decade, exchange current density around 4E-04 mA/mg and the onset potential ix close to 0.8 volt vs. NHE (normal hydrogen electrode). EIS measurements also supported this assertion through revealing the highest specific capacitance (~ 3.3 F/g). This result was in agreement with the highest B.E.T. surface area and the lowest charge transfer resistance exhibited by this electro-catalyst among the other samples. Stability is one of the determinant factors in selecting an electro-catalyst for the ORR. In this regard, ICP-TOF-MS was used to evaluate the chemical stability of the prepared electro-catalysts under corrosive acidic environment, by measuring the concentration of the dissolved titanium after a certain time. Heretofore, measuring the dissolved metal concentration by ICP-TOF-MS was done just to evaluate its chemical stability. However, in this project this technique was also used during the CV, to evaluate the electro-catalyst’s electrochemical stability as well, which is more realistic and similar to the PEMFC’s working condition. Stability of the best electro-catalyst with the highest catalytic activity (prepared by the U method) was better than the commercially used Pt/C electro-catalyst, both chemically and electrochemically. Electrochemical stability of the prepared electro-catalysts has also been studied at a high oxidizing potential (more than 2 volts vs. NHE). X-ray Photoelectron Spectroscopy (XPS) showed that the nitrogen amount on the surface of the electro-catalyst decreased from 11 % before the oxidation to 5 % after the oxidation, whereas the catalytic activity for the ORR decreased after the oxidation. Thus, decreasing the titanium nitride’s amount in the titanium oxy-nitride surface reduced its catalytic activity. In the second phase of this project, electro-catalytic activity of the titanium nitride for the ORR was investigated via a density functional theory (DFT) computation. To the best of our knowledge, there is no theoretical and computational quantum chemistry study of the transition metal’s nitride as the electro-catalyst in PEM fuel cells. ORR was considered to take place in three different sequential steps namely oxygen adsorption, hydroxide production and water desorption. Based on the XRD results, TiN(111) and TiN(200) were considered as the two major facets of the TiN. Simulation was done by the Vienna ab initio Simulation Package (VASP) based on the Plane-Wave basis sets and periodic boundary condition, while the PBE exchange-correlational functional was used to describe the interactions among electrons. Comparing the adsorption energies proved existence of a strong dissociative adsorption of oxygen on the TiN(111) regardless of the adsorption sites. However, because of a relatively strong OH adsorption, TiN(111) loses the active sites to proceed the ORR, while on the TiN(200) surface, x water production and desorption came about easily. Electron density of states (DOS) was obtained to calculate the d-band center and fractional filling in different situations. Considering two possible bridge and top adsorption sites on the TiN(200), these information indicated the hydroxide production and water desorption as the rate determining steps for the ORR in bridge and top sites, respectively. Therefore, it was shown that the TiN, specially TiN(200) had exhibited good electro-catalytic activity for the ORR. Losing this TiN amount from the titanium oxy-nitride’s surface might be responsible for the decrease of the electro-catalytic activity of the titanium oxy-nitride for the ORR

    Important variation in vibrational properties of LiFePO4 and FePO4 induced by magnetism

    Get PDF
    A new thermodynamically self-consistent (TSC) method, based on the quasi-harmonic approximation (QHA), is used to obtain the Debye temperatures of LiFePO4 (LFP) and FePO4 (FP) from available experimental specific heat capacities for a wide temperature range. The calculated Debye temperatures show an interesting critical and peculiar behavior so that a steep increase in the Debye temperatures is observed by increasing the temperature. This critical behavior is fitted by the critical function and the adjusted critical temperatures are very close to the magnetic phase transition temperatures in LFP and FP. Hence, the critical behavior of the Debye temperatures is correlated with the magnetic phase transitions in these compounds. Our first-principle calculations support our conjecture that the change in electronic structures, i.e. electron density of state and electron localization function, and consequently the change in thermophysical properties due to the magnetic transition may be the reason for the observation of this peculiar behavior of the Debye temperatures

    ELSI: A Unified Software Interface for Kohn-Sham Electronic Structure Solvers

    Full text link
    Solving the electronic structure from a generalized or standard eigenproblem is often the bottleneck in large scale calculations based on Kohn-Sham density-functional theory. This problem must be addressed by essentially all current electronic structure codes, based on similar matrix expressions, and by high-performance computation. We here present a unified software interface, ELSI, to access different strategies that address the Kohn-Sham eigenvalue problem. Currently supported algorithms include the dense generalized eigensolver library ELPA, the orbital minimization method implemented in libOMM, and the pole expansion and selected inversion (PEXSI) approach with lower computational complexity for semilocal density functionals. The ELSI interface aims to simplify the implementation and optimal use of the different strategies, by offering (a) a unified software framework designed for the electronic structure solvers in Kohn-Sham density-functional theory; (b) reasonable default parameters for a chosen solver; (c) automatic conversion between input and internal working matrix formats, and in the future (d) recommendation of the optimal solver depending on the specific problem. Comparative benchmarks are shown for system sizes up to 11,520 atoms (172,800 basis functions) on distributed memory supercomputing architectures.Comment: 55 pages, 14 figures, 2 table

    Electrochemical Formation of C-S Bonds from CO2 and Small Molecule Sulfur Species

    No full text
    The formation of C-S bonds is an important step in the synthesis of pharmaceutical, biological, and chemical products. A very attractive green route to C-S bond containing species would be one driven through electrocatalysis using abundant small molecule precursors but examples within this context are largely absent from the literature. To this end, this work demonstrates the use of CO2 and SO32- as cheap building blocks that couple on the surface Cu-based heterogeneous catalysts to form hydroxymethanesulfonate, sulfoacetate and methane sulfonate for the first time, with Faradaic efficiencies of up to 9.5%. A combination of operando measurements and computational modelling reveal that *CHOH formed on metallic Cu is a key electrophilic intermediate that is nucleophilically attacked by SO32- in the principal C-S bond forming step. In all, the proof-of-concept for electrocatalytic C-S bond formation and mechanistic insights gained stand to substantially broaden the scope of the emerging field of electrosynthesis
    corecore